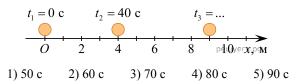
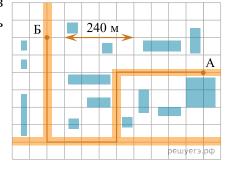

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

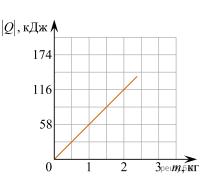
1. Небольшое тело скользит по гладкой поверхности горки в вертикальной плоскости. Зависимость высоты h точек поверхности горки от координаты x показана на рисунке. Нулевой уровень потенциальной энергии совпадает с горизонтальной осью Ox. Если в точке A потенциальная энергия тела была в два раза больше его кинетической энергии, то точки, в которые тело не может переместиться из точки A, обозначены цифрами:


1) 1 2) 2 3) 3 4) 4 5) 5

2. На рисунке изображены положения шарика, равномерно движущегося вдоль оси Ox, в моменты времени t_1 , t_2 , t_3 . Момент времени t_3 равен:

3. Если средняя путевая скорость движения автомобиля из пункта A в пункт E $\langle \upsilon \rangle = 19,0$ км/ч (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равного:

Примечание: масштаб указан на карте.

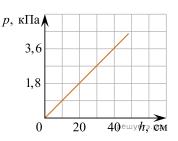


1) 128 c 2) 145 c 3) 162 c 4) 179 c 5) 216 c

4. Единицей давления газа в СИ является:

1) джоуль; 2) моль; 3) паскаль; 4) кельвин; 5) ватт.

5. На рисунке представлен график зависимости количества теплоты, выделяющегося при конденсации пара некоторого вещества, находящегося при температуре кипения, от его массы. Удельная теплота парообразования L этого вещества равна:


1) 29
$$\frac{\kappa / J \pi}{\kappa \Gamma}$$
;

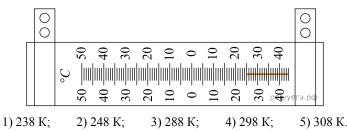
2)
$$58 \frac{\text{K} \text{Дж}}{\text{K} \text{\Gamma}}$$
;

1) 29
$$\frac{\kappa \angle J \times K}{K \Gamma}$$
; 2) 58 $\frac{\kappa \angle J \times K}{K \Gamma}$; 3) 116 $\frac{\kappa \angle J \times K}{K \Gamma}$; 4) 174 $\frac{\kappa \angle J \times K}{K \Gamma}$; 5) 300 $\frac{\kappa \angle J \times K}{K \Gamma}$.

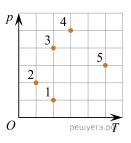
5)
$$300 \frac{\mathrm{K} \mathrm{/}\mathrm{/}\mathrm{x}}{\mathrm{K} \mathrm{\Gamma}}$$
.

6. На рисунке изображён график зависимости гидростатического давления p от глубины h для жидкости, плотность ρ которой равна:

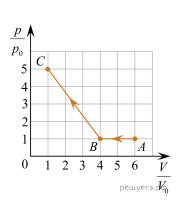
1) 1,2
$$\frac{\Gamma}{\text{CM}^3}$$


2)
$$1, 1 \frac{\Gamma}{\text{cm}^3}$$

3)
$$1,0 \frac{\Gamma}{\text{cm}^3}$$

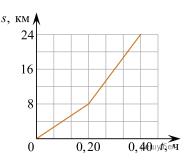

4)
$$0,90 \frac{\Gamma}{\text{cm}^3}$$

1)
$$1, 2 \frac{\Gamma}{\text{cm}^3}$$
 2) $1, 1 \frac{\Gamma}{\text{cm}^3}$ 3) $1, 0 \frac{\Gamma}{\text{cm}^3}$ 4) $0, 90 \frac{\Gamma}{\text{cm}^3}$ 5) $0, 80 \frac{\Gamma}{\text{cm}^3}$

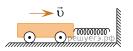

7. На наружной стороне окна висит термометр, показания которого представлены на рисунке. Абсолютная температура T воздуха за окном равна:

8. На *p-T* - диаграмме изображены различные состояния одного моля идеального газа. Состояние, соответствующее наименьшей температуре T газа, обозначено цифрой:

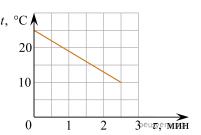
9. Идеальный одноатомный газ, количество вещества которого постоянно, переводят из состояния A в состояние C (см. рис.). Значения внутренней энергии U газа в состояниях A, B, C связаны соотношением:


1)
$$U_A>U_C>U_B$$
 2) $U_C>U_A>U_B$ 3) $U_A>U_B>U_C$ 4) $U_C=U_B>U_A$ 5) $U_C>U_B=U_A$

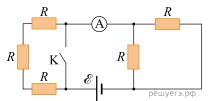
10. Единицей напряженности электростатического поля в СИ, является:


1) 1 Ф 2) 1 Гн 3) 1 A 4) 1 В/м 5) 1 Ом

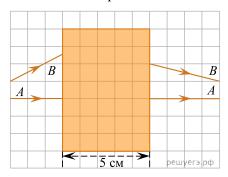
11.


На рисунке представлен график зависимости пути s от времени t движения автобуса на двух различных участках дороги. Средняя скорость v движения автобуса на всём пути равна ... $\frac{\mathrm{KM}}{\mathrm{U}}$.

- **12.** Тело движется вдоль оси Ox под действием силы \vec{F} . Кинематический закон движения тела имеет вид: $x(t) = A + Bt + Ct^2$, где A = 6.0 м, B = 4.0 м/с, C = 1.0 м/с². Если масса тела m = 1.0 кг, то в момент времен t = 3.0 с мгновенная мощность P силы равна ... **Вт**.
- **13.** На гидроэлектростанции с высоты h = 50 м ежесекундно падает m = 300 т воды. Если полезная мощность электростанции $P_{\text{полезн}} = 78$ МВт, то коэффициент полезного действия η электростанции равен ... %.
- **14.** К тележке массой m=0,40 кг прикреплена невесомая пружина жёсткостью k=196 Н/м. Тележка, двигаясь без трения по горизонтальной плоскости, сталкивается с вертикальной стеной (см. рис.). От момента соприкосновения пружины со стеной до момента остановки тележки пройдёт промежуток времени Δt , равный ... мс.

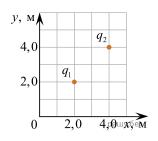


- 15. При абсолютной температуре $T=301~{
 m K}$ в сосуде находится газовая смесь, состоящая из водорода, количество вещества которого $\upsilon_1=2,4~{
 m MOЛЬ},$ и кислорода, количество вещества которого $\upsilon_2=0,60~{
 m MOЛЬ}$ Если давление газовой смеси $p=150~{
 m k\Pi a}$ то объем V сосуда равен ... л.
- **16.** На рисунке приведён график зависимости температуры t тела ($c=1000~\rm{Дж/(кr\cdot °C)}$) от времени τ . Если к телу ежесекундно подводилось количество теплоты $|Q_0|=1,8~\rm{Дж}$, то масса m тела равна ... Γ .

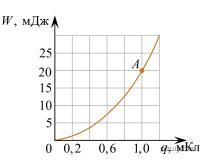


- 17. При изотермическом расширении идеальный одноатомный газ, количество вещества которого постоянно, получил количество теплоты Q_1 , а сила давления газа совершила работу $A_1=0.9$ кДж. Если при последующем изобарном нагревании газа его внутренняя энергия увеличилась на $\Delta U_2=2Q_1$, то количество теплоты Q_2 , полученное газом в изобарном процессе, равно ... кДж.
- **18.** Если период полураспада радиоактивного изотопа актиния $^{225}_{89}Ac$ равен $T_{1/2}$ =10 сут., то 75 % ядер этого изотопа распадётся за промежуток времени Δt , равный ... сут.

19. В электрической цепи, схема которой приведена на рисунке, сопротивления всех резисторов одинаковы и равны R, а внутреннее сопротивление источника тока пренебрежимо мало. Если после замыкания ключа K идеальный амперметр показывал силу тока $I_2 = 98$ мA, то до замыкания ключа K амперметр показывал силу тока I_1 , равную ... мA.



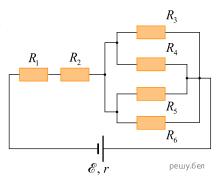
- **20.** Электрон равномерно движется по окружности в однородном магнитном поле, модуль индукции которого B=3,0 мТл. Если радиус окружности R=3,2 мм, то кинетическая энергия $W_{\rm K}$ электрона равна ... эВ.
- **21.** Электрический нагреватель подключен к электрической сети, напряжение в которой изменяется по гармоническому закону. Амплитудное значение напряжения в сети $U_0 = 69$ В. Если действующее значение силы тока в цепи $I_{\rm I} = 0.70$ А, то нагреватель потребляет мощность P, равную ... **Вт**.
- **22.** На тонкую стеклянную линзу, находящуюся в воздухе за ширмой, падают два световых луча (см.рис.). Если луч A распространяется вдоль главной оптической оси линзы, а луч B так, как показано на рисунке, то фокусное расстояние F линзы равно ... см.



23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1 = 24$ нКл и $q_2 = -32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического R

поля в начале координат равен ... $\frac{B}{M}$

24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... B.

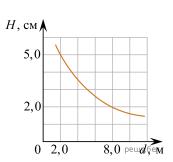

- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \,\text{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4\ \frac{\mathrm{pa_{\mathcal{A}}}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

